
I 

MTP-P&VE-F-62-4 
May 22, 1962 



GEORGE C. MARSHALL SPACE FLIGHT CENTER 

MTP-P&VE-F-62-4 

A S T R O R E L A T I V I T Y  

BY 
Helmut G. L. Kraure 

ABSTRACT 

In ?' ,is paper the special  theory of relativity is extended to include the vectorial and sca la r  
transformations of kinematical and dynamical quantities associated with bodies whose proper. or 
res t  mass  is variable with t i m e  (i.  e. rockets). Besides  the known transformation formulas for 
force (or momentum flow rate) the general transformation formulas for power (or total energy flow 
rate) are given for the first t i m e .  A l l  text books on the theory of relativity introduce t h e  c lass i -  
cal  definition for the power d i i ch  is an overspecification. I t  would be correct only when the r e s t  
mass is not changeable with time. This  assumption is always fulfilled when applying the theory 
of spec ia l  relativity to fast moving electrons, atoms, or nuclear particles,  but it is not true for 
fast moving rockets. Generalized relativistic conservation laws of momentum and total energy 
(mass) are derived. 

An application of relativistic dynamics to rocket propulsion gives the data of an arbitrarily 
accelerated rocket in free space (without external forces) in the system of a stationary earth 
observer, and in the rest  system of an astronaut centered in the moving rocket i tself .  

Two special ca ses  of rectilinear motion of a rocket with constant exhaust velocity a re  
treated: 

(1) constant thrust acceleration (hyperbolic motion) 
(2) constant mass flow rate or constant thrust 

Tables  with numerical values for dimensionless flight parameters will be given for both cases .  

In t h i s  report Einstein's general theory of relativity (gravitational theory) is applied to the 
motion of an artificial satell i te revolving in an arbitrary orbit around a central body and the t ime  
dilatation effect for this satell i te is given. This  relativistic perturbation theory is based on 
Einstein's general field theory, differential geometry of non-Euclidean spaces ,  potential theory, 
and ce les t ia l  mechanics. The short periodic perturbations are excluded by using t i m e  average 
values over a revolution. The secular  and long-periodic (non-relativistic a s  well a s  relativistic) 
perturbations of the osculating orbital elements, which represent deviations from the  elliptic orbit, 
are presented here for the case  of a rotating, non-homogeneous, oblated spheroidal central body. 
This is an extension of the work of Einstein (1915) who considered notion around a mass point 
a s  well as the work of deSitter (1916) and, independently, of Lense and Thirring (1918), who 
treated t h e  relativistic motion around a rotating, homogeneous, spherical central body, omitting 
the terms due to the square of the angular velocity. 

A formula for the relative difference of the t ime  rates of a satell i te clock, compared against 
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa- 
torial inclinations, thus extending the paper of Winterberg (1955), Singer (1956) and Hoffmann 
(1957). 
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R EL AT1 VlSTlC ROCK ET MECHANICS 

Y P 3  
SUMMARY 

In this part  the special  theory of relativity is extended to include the vectorial and sca la r  
transformations of kinematical and dynamical quantities associated with bodies whose proper or 
rest  mass is variable with t i m e  (i.e. rockets). Besides the known transformation formulas for 
force (or momentum flow rate) the general transformation formulas for power (or total energy flow 
rate) are given for the first time. All  text books on the theory of relativity introduce the c lass i -  
cal  definition for the power which is an overspecification. It would be correct only when the  res t  
mass is not changeable with time. This assumption is always fulfilled when applying the theory 
of special  relativity to fast moving electrons, atoms, or nuclear particles,  but it is not true for 
fast moving rockets. Generalized relativistic conservation laws of momentum and total energy 
(mass) are derived. 

An application of relativistic dynamics to rocket propulsion gives  the data of an arbitrarily 
accelerated rocket in free space (without external forces) in  the system of a stasionary earth 
observer, and in t h e  rest  system of an astronaut centered in the moving rocket itself. 

Two special  ca ses  of rectilinear motion of a rocket with constant exhaust velocity are 
treated: 

(1) constant thrust acceleration (hyperbolic motion) 
(2)  constant mass flow rate or constant thrust 

Tables with numerical values for dimensionless flight parameters wil l  be given for both cases .  
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1. RELATIVISTIC ROCKET KINEMATICS 

A. General Lorentz Transformations 

The special  theory of relativity is based on two principles: 

The postulate of relativity. It is impossible to measure or detect  unaccelerated translatory 1. 
motion of a system through free space.  

2. The postulate of the constancy of the velocity of light. The velocity of light in free space  
is the s a m e  for a : :  observers, independent of the relative velocity of the source of light and the 
observer. 

, 

Using these postulates, A. Einstein (Ref. 1) derived the Lorentz transformations (trans- 
formation formulae between two reference frames in relative uniform motion to each other) previ- 
ously derived by H. A. Lorentz (Ref. 2) and H. Poincare (Ref. 3) on the bas i s  of the electron 
theory. 

Two coordinate systems S and S’ moved against  each other with a constant system velocity, 
(where v is the velocity vector of the system S‘relat ive to S and V’I - v is the velocity vector 
of the system S relative to S’) have origins 0 and O’, respectively, coinciding a t  the t ime t=tLO. 
The transformation of a position vector r = (x, y, z) and the t ime  t in the system S to the corres- 
ponding quantities r ’= (x ‘, y ‘, 2’) and t’ in the system S ‘ is given by the general Lorentz trans- 
formation (without rotation) in a paper by G. Herglotz (Ref. 4),  namely 

L J 

or 

where c is the light velocity and 

a = \ / 1 -  ( v / c ) 2  < 1 ; 1 - a2 = (v/c)2 (3) 

~111 these transformations satisfy the equation 

s2 = (r r) - c2 t 2 =  (r ’- r ’ )  - c2 t ’ 2  (invariant) (4) 

The inverse equations ( 2 )  follow from equations ( 1) by interchanging ( r ’  , t’) and (r, t )  



and replacing v by v‘= - V. 

The general Lorentt transformation with rotation (when the Cartesian axes  in S and S’ do 
not have the same orientation) are 

, x - u t  x =-= x cosh $ - c t  sinh $ 
a 

y ‘ = y  ; z ‘ = z  

, c t - x  v / c  c t  = = c t  cosh $ - x sinh $ 
a 

D r ’ = r + v  [[$ -1): - 4 

x ‘ +  u t ‘  = x‘cosh $ + c t ‘ s inh  + X =  
a 

y = y ’  , z = z ’  

c t ’ +  x ’ u / c  
a 

c t  = = c t ’ c o s h  $ +  x‘s inh  $ 

D r ’ = r + v  [[$ -1): - 4 
where D is the rotation operator (a tensor or matrixj. Due io 

-1 D v ‘ = - v  , v ’ z - D  v 

there is 

and the inverse relations 

because of the identity 
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B. Transformation of Particle Velocities 

The motion of an arbitrarily moving particle will be given in the system S by its instantane- 
The particle velocity veftor is u = d r / d t =  

) = (.2,5,2) and the velocity itself is given by u = (u:+ u:+ u2 )/2. Corresponding 
ous position x = x ( t ) ,  y = y ( t ) ,  z = z ( t )  or r (t). 
= ( u =  ,u , u  
quantities i n  the System S’are  marked by a prime. 

By differentiation of eqs .  ( 1 )  and ( 2 )  one obtains the transformation formulae for the 
time elements and for the Lorentz contraction factor a: 

dt’ 1 dt 1 u :v 
dt a 

Transformation formulae a l so  follow for the local velocity vector of a particle in the reference 
system S and in the system S’ in relative uniform motion with constant velocity v to S, namely 

, dr’ dr’/dt a u + v  { ( 1 - a ) ( u * v ) L u 2 - 1 ]  u = - = -  = 
dt’ dt ’/dt 1 - (u.v)/c 2 

or 

dr dr/dt’ a u ’ + v  { ( ~ - U ) ( I J ’ * V ) / U ~  + l l  
d t  d t / d t ’  1 + (u ’.v)/c 2 

U r  - = - =  

These formulae are the basis  for the relativistic kinematics. By squaring eqs.  ( 1 3 )  
(14)  therc rcnults 

I 1 - ( W C P  

1 - (u /c)2  . 
1 - ( u  ’/c)2 J . a  

I 
dt ’ 1 - (u .v ) /c~  

dt Cl 
- =  

1 + (u ’.v),’c2 = 

and thus 

dt dl - (u /c )~  = dt’ 41 - ( u  Yc)’ = dr (invariant) 

where r is called the proper t i m e  measured in a system centered in the moving particle. 

(17) 

For u (1 v respectively u’IJv eqs.  ( 1 3 )  and ( 1 4 )  yield the usually quoted addition theo- 
rem of particle velocities 

u - v  ’ U ’ f  v u =  
1 - (U.V)/CZ ; = 1 + (u ’.v)/c2 

(19) 
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For u l  v, respectively, u ’I v eqs .  ( 13) and (14)  yield 

U ‘ = a u - v  ; u = a u ’ t v  (203 

For IuI = c (photons) there is u’= - u, while for u = v there follows u ‘= 0 (transformation to rest)  
meaning that the coordinate system S’is centered in the particle itself (rest  system So ). 

For the spec ia l  case where v is in the direction of the posit ive x - axis ,  eqs .  ( 1 3 )  and 
( 5 4 )  giye 

, 
(21) 

au a u z  u x - v  . , 
1 - (ux V>C2) #. = 1 - ( u  &c2) 

u, = u y  = 1 - (ux v/c 2) 
’ 

or 

Taking sca la r  and vector products of eq. (13) with v produces 

* Iu’xvl = * U‘V - v 2  u’.v = 
1 - (U’V)/C 2 ’ 

Introducing the angles 8 = 4 (u, v) and 8 ’ = q (u ’, v) the above equations can  be written after 
division by Y, in the following form 

u cos  8 -  v 

1- 
u ’ cos  8‘ = 

u v  c o s e  
C 2  

a u sin 8 
u v  cos 8 

C2 

; u‘s inO’= 
1- 

and thus 

, [ (ucos  8 -  ~ ) 2 + ( a u s i n 8 ) 2 ] 1 , Q  [ 1 -  2 ( v / u )  c o s  8 + ( ~ / ~ ) 2 - ( ~ / ~ ) 2 s i n 2 8 ] * / 2  

C2 C2  

(25) u =  = u  
u-.v cos  8 u v  cos  8 1 -  1 -  

and 

a sin 8 t ang’=  
cos  8 - ( v / u )  

The inverse equations follow at once by interchanging the primed and unprimed quantities and re- 
placing v by - v ,  thus 

U ’ C O S 0 ‘ + V  . a u ‘ s i n  8‘ u cos 8 = e’ 7 u ‘v cose ‘ 
l +  c 2  l +  c 2  

a s in  9’ 
COS8‘+ ( v / u ’ )  

tan 8 = 
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Applying. :qs. ( 2 4 )  and ( 2 6 )  respectively eqs.  ( 2 7 )  and ( 2 9 )  to photons ( u  = u ’ =  c )  
the relativistic formulae for the aberration of light follow: 

a s i n  0 
1 - ( v / c )  cos  6 

a s i n  8 
; tan Q’= cos  6 - ( v / c )  ; sin 6‘= 

i - (v,w cos e cos 6’= cos 6 - ( v / c )  

or 

a sin 6‘ 
cos 8’+ (v /c )  

. tan 0 -  cos 8 %  ( v / c )  sin = a sin 6’ _ .  
1 + ( v / c )  cos 6‘ ’ cos e = 1 + ( v / c )  cos 6’ ’ (31) 

A more rigorous proof can he derived from the invariance of the phase of an electromagnetic 
wave. If v is the 
frequency, w the phase velocity, n. the wave normal or the unit vector in the direction of the ray, 
and [k = (I,’- ,)  n] the wave propagation vector, the invariance of the phase can be expressed by 

This  principle a l so  gives the relativistic formula for the Doppler effect. 

Eliminating r ’  and t ’  by means of eq. ( 2 ) 
terms respectively on both s ides  of the above equation yields the transformation formulae 

and comparing space-dependent and time-dependent 

v‘+ (k’sv) 
k = k ’ + v  [(; - -  1) $ + $1 ; u = a 

The elimination of r and t by means of eq. (11.2) leads to the inverse relations 

(33) 

Introducing the direction angle of the wrve normal 0 = Q (n, v) the transformation formula for t h e  
frequency can be written 

Taking the scalar and vector products of k ‘ with v produces 

and 

v V 
W W 

I k ’ x  vJ  = Ik x VI  or ln ’x  VI = - (n x VI 

These equations can he written 

U‘ cos e - ( v w )  l C 2  , L; - V 
? C O S  6’= - 

W W a W W (36) 

Dividing both equations gives the transformation formula for the direction of the  wave normal 

a s i n 8  
tanO‘= cos 6 - (v w ) / c  2 (37) 
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Squaring and then adding both equations produces 

v‘ v _ -  , - - [ sin2 6 + (cos 9 - ( v  w ) / c 2  1 ‘/a2 3 ‘1’ 
w w  

Eliminating v’/v yields  the transformation formula for the phase velocity 

w-v cos 9 - 

The inverse iransforrr.ztion formulae for the wave characterist ics a re  

a s i n 8 ‘  ; t a n 8  = 
, 1 + (v,/w‘) case' 

v = v  - cosO’+ ( v w ‘ ) / c 2  a 

w I +  v c o s ? ’  - - 
1 - ( L s i n 0 ’ ) ~ + 2  7 V W ’  cos Q’+ y$) 2 1/2 

(39) 

A comparison of eq. ( 2 6 )  with e-q. ( 3 7 )  and eq. ( 3 8 )  with eq.  ( 2 5 )  shows that u = c 2 / w  
and u ‘ = c2 /w’ .  Therefore velocity and direction of a particle are transformed in the same way 
a s  corresponding quantit ies for a wave with phase velocity w = c z  / u .  Dearoelie used this re- 
su l t  in h i s  wave theory of elementary particles. 

Applying the above mentioned formulae to a light source in vacuo ( w  = w ’ =  c)  the follow- 
ing  transformation formulae resul t  

V v 
, 1- F c o s 9  , 1 f cos  9‘ 

v = v  ; v = v  ‘ (41)  a a 

cos9’+  -! n sin 9‘  n sin 0 ‘  
c o s  9 = ; sin 9 = - ; tan Q = 

v V 1 + - COS 9’ i + L  case' cos 9 ‘ +  - 
(43) 

It  is e a s y  to derive the classical aberration formula from these equations, namely 
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sin (6’- 0) = sin 8 ’ cos0 - cos d‘s in  0 0 

V 

C 
- -(I -a )  COS 0 

1 - - cos 0 
= sin 6 -  

V 

C 

V 

C t’ r ’cos 8’ r v  
C 

(1 -a) cos d’+ - 

1 + : C O S O ’  

L -  = sin 6 ’ 
( T ‘ v / c )  sin 6 = _v sin 

r ’ C 
C 6 ’ -  0 = 

tl 

C 
For - << 1 (a I I )  the above mentioned formulae yield 

(45) 
V V 

C C 
6‘-6- - s i n $ ‘  - s in8  , 

the same equation which follows directly from the figure. 

In discussing the Doppler effect  there are  two special cases 

a )  the usual longitudinal Doppler effect: n I( v ( 6  = d‘= 0) 

V I -  - v ’  / I - -  
C 

v = v  - -  - v  < V  

R V 

C 
b) the transverse Doppler effect: n 1 v (8 = : 9’= R -  COS'^ - = R - s in’ la )  

The decrease of the frequency, v ‘ , 
in accordance with the time dilatation of a moving clock. 

of the emitted light corresponds to a shift towards the red 

It is useful to have available the transformation formulae of certain other quantities. Using 
eq. (44) the transformation formula for the solid angle d n  = sin 0 d6 dq5 

The transformation formulae for the amplitude A,  the  volume V of a laterally bounded, finite 
wave and the total Energy E = ?4 A 2  V of the wave ere 

The total energy density u = E/V = 5 A2 will be transformed according to 
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(50) 
+ -:-cos 6./ 

C 

DUP t~ the transfnrmation formula for the number.density of photons D = u/hv: 

the number of photons N = D - V  = E/hv  is a relativistic invariant: Thus the  relativi- 
s t ic  trans6 rnation from one to ancther coordinate system is not connected with a creation or 
destruction of photons. 

N ‘= N.  

For practical applications of the relativistic Doppler effect and aberration formulae, it is 
more advantageous to replace the angle 8 between the velocity vector v of the light source 
(relative to the observer) and the actual direction from the light source to  the observer  by the 
angle 9 = 8 + n between v and the actual direction from the observer to the lrght source.  Like- 
wise  the angle 8’ has  now to be replaced by @’= 8 ‘ +  n for the corresponding apparent angles .  
Furthermore, v’ should be the proper frequency v, of a light source or a transmitter while v is 
the frequency measured by an observer or a receiter. 
( p = v / c ;  a = d l 7 1  

The- eqs .  ( 4 1  ) to ( 4 4 )  therefore y i e ld  

1 + p cos  0 1 - /9 cos 9’ 
v = v  d i q F  ; v = v o  d i q F  ( 5 2 )  

0 = 9’= 0 (receding space  vehicle): 

cos  0 + p 
1 + p cos 9 

cos @‘= 

cos  0 = *. 

’’ .JS’ tan tan - = 2 1 + p  
6 1-p2 - ; 1 - p cos@‘=  2 1 + p cos  0 (55) 

- ’’ < 1 (shift to the red) 1- B Q 
d u o  = - - - 

Q - 1.p il+p 
n - 1  

2 
a = -  ; $’=cos .  p: 

v/vo = \/I - 162 E a <1 (shift to the red) 

i7 0 ‘=  - ; 8 = II - c o s y :  
2 

1 1 v/v, = = > 1 (shift to the violet) 

8 = 6’= II (approaching space  vehicle): 

- - -  I + 

a ’-e 1 - 6  
> 1 (shift to the violet) 1 + B -  a v/v = -- 
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0 0.5 0.995 

00 90 00 
30 17.588 1.537 
60 36.869 3.311 

60.000 5.732 90 
120 90.000 9.912 

139.792 21.166 150 
180 180.000 180.000 

The above mentioned formulae also apply to the case  where the (earth) observer is moving 
with respect to the fixed s ta rs  and the light source (fixed s ta rs )  is a t  rest. It is only necessary  
to interchange primed and unprimed quantities and to replace v by -v .  

An illustration of the before mentioned formulae is shown in the following table: 

0 0.5 0.995 

1 0.5773 0.0501 
1 0.6043 0.0537 
1 0.6928 0.0668 
1 0.8660 0.1000 

0.1990 1 1.1547 
1 1.5274 0.7230 

20.0000 1 1.7321 

e 

00 
30 
60 
90 

120 
150 
180 

Table 1. Aberration and Doppler Effect 

I 
(1 - fg 2 )  112 

1 + /3 cos 0 v/vo = p + cos 0 
1 + p cos e e ’ =  cos-l 

p = v/c /3 = v / c  I 

C. Lorentz Contraction and Time Dilatation 

Two important applications of the Lorentz transformations can be made: 
1. A measuring rod at  res t  (u R 0)  relative to the system S has  the length A r  E r l -  r l  . In the 
system S’ moving with the velocity v relative to S the two end-points of the rod have a relative 
veiocity u’=  - v and simultaneously 

have a distance 

For A r  11 v there is A r ’ =  a Ar (Lorentz contraction) while for A r l v  there is no contraction: 

A t ‘ =  Ar 

2. Two events observed in the s a m e  point (Ar = r ,  - r l  = 0) of the system S in the t i m e  interval 
At = t 2 -  tl , appear in the s y s t e m  S ‘ i n  the t ime interval A t ‘ =  At/a (time diliitation), howeveq 
now in thedis tance Ar'=-vAt/u=-v Att: 

Thus, if Io is the res t  length of a rod, the length of the moved rod is 

I = Io 41 - (v/c)2 

and, if 7 is the proper t i m e  of a clock which is a t  rest ,  the t ime  of the moved clock is 

I t =  fl- fv/c)2 

so that the moving clock will l ag  behind one a t  rest .  

(57) 

(58) 
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D. Transformation. of Particle Accelerations 

Differentiation of eqs.  (13) and (14) gives the corresponding transformation equations for 
the acceleration: 

or 

Some special  ca ses  will be considered now. For allu there follows 

* P 2  l + a  
a-v v a -  -___ 

and for aI1uIIv there is 

a =  

Setting allv yields 

and setting a l v  (a.v= 0) gives 
a2 a a a =  

Another case ,  ULV (u-v = 0) provides 

3 
a 

For the special  case where v = ( u , o , o )  is in the direction of the positive x - axi s the eqs.  (59) 
and (60) yield 

a3 a: 
; a I%= 

a3 a, 
a: ’ x ’ =  ( l - : u x u / c 2 )  3 (1 + u: u / c  2) 3 
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A very important case is obtained by putting u = v or u ’- 0 (transformation to a r e s t  system). 
The corresponding 

The quantities 1, - u a n d  a -- 41 - ( 1 1  ’ c ) ~ : -  J1 - ( 7 1 - r ) ~  are  
This  means that the primed system is centered in the moving vehicle i tself .  
t i m e  t’ i s  called the proper time r .  
now functioris of the t i m e  t .  The eqs.  (59 )  and (60) are  now 

a.u u . . a. U a a + ---- I1 - (1) u 
U 2  

a a +  - - 
c 2  l + a  

and thus 

There are two special  cases. Namely, for allu or q’llu there is 

a ’= a/n3 

and for a u or a ’  u there is 
# 

a ‘= a/a2 

In the section on  dynamics there appears the function 

- - - 
a 3  0 3  

nilere 
(66) can be  written 

a’ = du ,/’dt and u du/dt = u.du;’dt = a.u h a s  been used. [Jsing eqs .  (62) a n d  (63) e<]. 

, a‘-u u = - + - - = a a  aeu u 
- 

((57) c 2  a3 c . 2  1 + a  

For a / /  u or a ’11 u there is 

while for a 1  u or a ’ l u  there is 
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2. RELATIVISTIC ROCKET DYNAMICS 

A.  Definitions 

In accordance with the principles of relativity that the theorems of conservation of m a s s  and 
momentum hold in all  sets of coordinate systems in uniform relative motion (using the more 
complicated Lorentz transformations instead of the Galilean transformation equations), i t  is 
necessary to modify the older Newtonian mechanics by assuming that the mass of the particle 
depends on its veiocity. 

If m, is the proper mass or res t  m a s s  of a particle moving. with the  velocity u the following 
defizitinn equations hold. The mass is given by 

This  yields, for the momentum vector, 

m u  
= mu =- d1 - u “ / c z  

The total energy is introduced by 

where 
the particle 

E ,  = m ,  c2 is the res t  energy. The difference between E and E, is the kinetic energy of 

2 
T =  E - E o = c 2 ( m - m o ) = m o c 2  

The force is defined in relativistic mechanics a s  the momentum 

Tolman (Ref. 5, p. 46) says  that “the inclusion of m ,  inside 
applicable a l so  in cases  where the proper mass of the particle varies, as it might, for example, 
from an inflow of heat.” In 1934, he probably did not have in mind an application to fast-moving 
rockets expelling proper m a s s  (exhaust gases).  A s  in the author’s paper of 1955 (Ref. 8 ) where 
the Special Theory of Relativity was extended to systems with timely changeable rest m a s s e s  
(rockets), the proper or res t  mass m, will be treated a s  a function of the time t (but not  of the 
flight velocity u )  in this paper. Thus the l a s t  equation yields 

(1 + 3/4 u V C 2  +..-) 

flow rate 

(73) 

the bracket makes the exmession 

(74) F = m  --I- - u = m a + - u =  

showing that in relativistic mechanics the force F and acceleration a will generally not be in 
the s a m e  direction, a s  it was in Newtonian mechanics. The power or work done on a particle per 
unit t i m e  will be defined here a s  the total energy flow rate 

Ciu dm dm m , .  -+ -(+)u d d t  d t  d t  ,IT- d t  d t  41 U ~ / C Z  

d E  dm E mo c2 P = - -  1 - u 2 / c 2  

B. Transformations 

(75) 

The general Lorentz transformation (eqs. 1 and 2) provided the relations between the  
The corresponding transformation space  and t ime  coordinates of system S to those of system S’. 
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equations for velocity and acceleration were derived from them. 
the transformation relations for certain other quantit ies of particle dynamics. 
there follows 

It is very important to possess 
From eq. (70) 

m \/1- u Z / c 2  = m’ \ /1-  u’2/c2 = m, (invariant) 

The proper time element ( d r  or dt, ) is given by 

d t  \/1 - uz ’c 2 = d t ‘  \/I - u ’ ~ ” c ~  = d t ,  (invariant) 

A division of both equations shows the following simple relations 

dt dt’ - -  - - - % (invariant) 
mo m m’ - 

By means of eq.  (17) the eqs.  (76) and (77) immediately give - 
m dt 1 + ( u  ’.V)/CZ I 1  + ( u  ’.v)/c 2 

(76) 

(771 

(79 )  

-- 
a = dl - v 2 / c =  

The transformation equations for these quantit ies of particle dynamics are,  

(1) for the mass: 

(2) for the mass flow rates  

or 

dm’ dm (a v )  / c 2 

dt’ dt 1 - (u.v),/c2 
= -  - m y  - 

thus 

m , (a ’Uv),’? (a-vVC2 . 
1 + (u:v)/’cz a - v  

= 
1 - (U .V) /CZ  

’ 

(3) for the momentum vector: 

p = m u =  = , , + m  . v  -E1-.)-  m a u ’ + m v 1 ( 1 - a ) ( u : v ) / ’ u 2 +  11 
1 + (u  ’.V)//C 2 a 

thus 

p’*V E’ , v (p’.v)/(l + a) + E’ 
a a 

or 



(4) for the total energy: 

(5) for the force (momentum flow rate): 

or 

(6) for the power (total energy flow rate): 

(89) 

Instead of differentiating eq. (86) it is a l so  possible to multiply eqs.  (81) or (82) with c2 
y ie lding 

dE dE/dt’ dE’ /d t ’+(F’*i )  dE’ dE/dt - (F-V) . -- - - = -- 
dt d t /d t ’  - 1 + (U =v)/c 2 ’ dt ’ 1 - (u.v)/c2 

(90) dE‘ dE m(a*v)  ; - -  - - -  dE dE‘ + m‘(a‘*v) _ = -  
dt dt‘ 1 + (U ’ . V ) / C ~  dt‘ dt 1 - (u*v)/c~ 

I t  is easy  to see that the eqs.  (89) and (90) are the same s ince  

d dm d dm‘ F = - (mu) = ma + - u ; F’-= - (m’u’) = m b ’  + - 
dt dt dt dt ‘ (91) 

The transformation eqs.  a re  not given i n  any standard book on Theory of Relativity, al- 
though they follow from the definition F = dp/dt or F’= dp’/dt’. See, for example, the books 
of Tolman (Ref. 5) and Moller (Ref. 6) on Theory of Relativity. Instead of eq. (89)a further 
definition is introduced, namely 

(89) 

dE/dt = (F-u) or dE’/dt’= (F’-u’) 

That would mean that in any system the change of kinetic or total energy per unit t ime  is equal 
to the work done by the force per unit time. However, this is an overspecification. 

Identifying the system S’with a res t  system S, (U ’= 0 ; u = V) the definitions dE/dt = (F u )  
and dE’/dt = (F :u‘ ) are correct only when the res t  m a s s  is not changeable with t ime .  This  
assumption is always fulfilled when applying the Theory of Special Relativity to fast moving 
electrons, atoms or nuclear particles. However, th i s  is not the c a s e  when applying it to  fast 
moving rockets, expelling rest  m a s s  (exhaust gases). In the general case ,  these definitions are 
wrong and have to be replaced by the correct transformation formula eq. for the power. ( 8 9 )  

C. Transformation to a Rest System 

Putting u ‘ = 0 (u = v) in the before-mentioned transformation equations the following rela- 
tions will result when the prime is replaced by the subscript 0 (to designate that quantities 
belong to the res t  system): 
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and for the mass flow rate 

thus 

The force is transformed according to 

F = a F o + u  = a F , +  K[Q+ c2 1 + a  s) dt, 

( 93)  

( 94) 

thus 
d E  dm 

( F - u )  = ( F ,  *u) + (1 - ~ 2 )  0 = ( F ,  *u) + u2 0 
dt0 dt0 

The transformation law for the power is given by 

d E  , (a,w) = 0 + ( F ,  .u) d E  d E  
-= 0 + m  
dt dt, dt, 

The  eqs. (96), (97) ,  (98) were already given by the author in  1955 (Ref. 8). Writing eqs.  (61) 
and (62) as 

and using these transformation laws for the acceleration or the proper acceleration,, respectively,  
together with eqs. (92) and (93) in  the definitive equations for the forces 

d dm F = - ( m u )  = ma +- u ; F, = moao dt dt 

then the above-given transformation equations (94) and ( 9 5 )  are obtained. Dividing eqs.  ;97) 
and (98) by c 2  yields 

The first of these equations can be obtained directly without using the transformation equations 
by differentiation: 
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Instead of splitting up the force, F, in  one part proportional to the acceleration a and 
another part proportional to the velocity u ( see  eq. lOl), F can be subdivided into one term 
due to the change of the res t  mass with t ime  and the res t  term F* identical with F for parti- 
cles with constant res t  mass. 

thus 

and 

F*= aFo + (s) l+a U = aF, + (1 -a)($) u 

Multiplying the last equation with u yields 

dE dE 
dt dt, (Feu) = (F, *u) = - - 0 

Putting eq. (106) into eq. (104) gives the equation of motion in the form. 

m --= du F , ~  (T) F**u 
dt 

Compared with the corresponding equation in the book of Mdller eq. (107) has  the 
additional term - a2 (dm, /dto)u on the right s ide  and the advantage that it is a l so  applicable 
to systems with timely changeable rest masses (rockets). Introducing the force F, or the 
Newtonian force F, , into equation (107) yields [by means of eqs. (102), (105) and (106)l: 

(Ref. 6) 

7 r 

m - = ~ -  du - - - U = F - ~ ( ~ , + ~ ~ ~ J U  dm 
dt dt 

and 

In the special  c a s e  F, 11 u there is 

dm 
dt o 

(110) F,= F,; F = F o +  0 u ; m a  = a 2  F, or a/a3 = a, 

D. Application of Relativistic Dynamics to Rocket Propulsion 

In the following, the data for a rocket and its exhausted gases  will be marked without a 
subscript in  the system S of a stationary earth observer and with the subscript 0 in the res t  
system So of an astronaut centered in the moving rocket itself. Applying the transformation 
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eqs.  (13) and (14) for particle velocit ies to the exhaust velocit ies v,, in the system So 
where the thrust i s  generated and v, in  the system S of an earth observer the following formu- 
l a s  are obtained: 

(112) a v e + u ( ( 1 - a ) ( u . v e ) / 2 . t 1 ]  - - av, +uKu-ve/c2) / (1+a)  +11 
1 + (U.VC)/C 2 

v, = 1 + (u*ve)/c 2 

where the relative velocity between the two systems is u 
be written, for this case, 

and Q = \/1 - u2 / c  2. Eq. (79) can 

where dm and dm, are  the elements of m a s s  flow after ejection in the two systems S and 
So , respectively. The element of mass  flow before ejection 

is invariant. The mass flow rate in the system So of the astronaut i s  

where 
of the rocket. 

p: = - dm,*/dt, is the mass flow rate in  a system in rest  relative to the exhaust g a s e s  
of the earth observer is The corresponding mass flow a t e  in the system S 

in accordance to eq.  (102) . The quantity 

(117) 

i s  the primary thrust force of  the rocket in the rest  system 
The corresponding thrust in  system S which the earth observer would measure i s  

So where the thrust i s  generated. 

or using eqs. (111) and (117) 

in accordance with eq.  (94). The results can  be summarized in table 2. 

An important quantity is that part of the total  energy of the exhaust g a s e s  which can be 
of the astronaut this  conver- converted into useful work (kinetic energy). In the r e s t  system S 

sion factor, first introduced by E .  Saenger (Ref. 9 ) ,  is given by 
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and thus 

u eo / c = + - ( l - y ) 2  = lm-7- 
Putting a = mo /'m into eq. (113) gives  

U. v, 
m 

The equation of motion is 

or 

thus, using eq. (122), 

dm 
m 

du = - (v, + U) - = - (v, + U )  
0 

Applying eq. (11 1) then yields 
- 

Considering the special case ve0 ( 1  u equation (124) reduces to 

which can  be easi ly  integrated for constant exhaust velocity. 
rocket for t = O ( u  = 0); the integration yields 

Let Mo be the r e s t  mass  of the 

thus 

where T is the mass ratio of the rocket. The  inverted formulas a r e  

The eqs.  (126) and (127) represent the fundamental relativist ic rocket equation derived by 
J .  Ackeret (Ref. 10) in 1946 from the conservation law of momentum. Using a = d m ;  
u / c  = dl -.a2 eq. (126) can be transformed into 

C - 
a 

M o  + \/IT?- 
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T h i s  formula was  found by R. Esnault-Pelterie in  1928 from a relativist ic treatment 
of the special  c a s e  of a rocket with constant proper acceleration a,. He noted that this equation 
is valid for any law of mass consumption s ince it is independent of ao. In c lass ica l  physics  
( c  + m or u / c  -+ 0) the basic  relativist ic rocket equation becomes the well-known formula 

(Ref. 11) 

u/v, U 
or In T =  - M 

T -  > = e  
mo veo 

s ince  

u I n  (1 + u / c ) -  In (1 - u / c )  u 1/(1 + u/-c)+ 1/(1 - u / c )  , _  - -  u 

2 ye0 
limln r =  l i m  - = lim - 

U/C+O d C + O  veo 2 u / c  d C - 1 0  Veo 

Representing 

as  function of x u,’c ( 0  -,< x 6 1) , a double differentiation shows  that an inflection point 
( y  ” = 0) appears for 

inflection point appears 

Before closing this 

The mose favorable case u, = c (photons)yields  xi = K and y i  = 1/dT ; that i s ,  the 
when u = c/2 and r = 3 

part, it should be mentioned that in  the special  c a s e  F, 11 u 

If II = u, is attained, then ue will vanish and also F = 0. From the techniqal point of view 
the thrust. force F,  of  the rocket i n  the r e s t  system 5 ,  is naturally the matter of primary 
interest .  

E. Motion and Mass Consumption of a Rocket 
Under a Constant Proper Acceleration 

The motion of a body under the action of a constant proper acceleration a, in the direction 
of the velocity (a, 11 u), that  is rectilinear uniformly accelerated motion, i s  known a s  hyperbolic 
motion. in  1908, but was discussed more fu1- 
ly by M. Horn (Ref. 13) in  1909 and A .  Sommerfeld (Ref. 14) in 1910. I t  was R. Esnauit- 
Pel ter ie  (Ref. 1) in 1928 who applied th i s  kind of motion t o  rockets with constant thrust accele-  
ration and discovered the basic  relativist ic rocket equation for any law of m a s s  consumption. 
Contributions to this problem were also made by Shepherd (Ref. 15), W. L .  Bade (Ref.  161, 
E. Saenger (Ref. 17) and others. This  presentation follows closely the author’s treatment 
(Ref. 8). 

It was first  considered by :dinkowski (Ref. 12) 

For a rocket in rectilinear motion with a constant proper acceleration in a system moving 
with the  rocket (rest system) and thus a different one a t  each instant-eq. (67) can be written as  



or, integrated, 

U 
= a o t  (with u = 0 for t = 0) (131) \/1- u 2 / c  2 

This gives for the velocity 

dx a, t / c  

dt \/1 + (aot/c)2 
u =  - = c  

and, thus, f o r a  

Eqs.  (130) and (133) yield for the acceleration 

The distance is obtained by integration of eq. (132) with 

thus 

1 - _  - 1 +  A t  a 2  = 1 1 +  a . X =  
C 2  C \/l - u2/c2 a 

Eqs.  (135) or (136) give immediately 

Therefore, the world lines are hyperbolas in an x - t diagram and the motion is called hyper- 
bolic motion in comparison to parabolic motion ( x  = ?4 a ,  t 2 )  in Newtonian mechanics. The 
inversion of the above-mentioned formulas yields for the t i m e  

The proper t ime of the astronaut follows from integration of eq. (133): 

c 
The inverted formula reads 1 

r 1 
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Inserting this relation into eqs.  (133), (134), (132) and (135) y i e l d s  t h e  acceleration, velocity 
and distance of the rocket a s  a function of the proper or local time of the astronaut. 

1 

In addition to eq. (139) for the proper t i m e  to  the inversion of the preceding formulas yields 

A rocket travelling with constant proper acceleration uo requires, in order to attain a piven 
distance S, a t i m e  

T =dT 2 s 
a0 

in the s y s t e m  of c lass ical  physics;  

in the system of the stationarv earth observer; 

(146) 

( 1 4 7 )  

( I  48) 

in the system of the astronaut traveling with the rocket. 
nauts undergo an immense gain in time from the relativist ic principle. 

The preceding relations contained onlv kinematical data.  

In peneral t o  < 7' < t. l h u s  the astro- 

l h e  equation of motion in the 
system of the astronaut 

yields,  after integration, the mass ratio of the rocket: 



The tiirust is given by 

The other kinematical data ,  expressed a s  functions of r, are: 

All relations in this paragraph can be written in a dimensionless form bv selecting 
unit of time, c as  the unit of velocity and c 2,'uo a s  the unit of length. With c = 3.1010 crn/sec 
and a. = go = 981 cm/sec2 

c u ,  

- 3%. 10 7 sec = 354.2 d = 0.97 vears c 3.10'0 

go 981 
_ -  

F. Motion and Mass Consumption of  a Rocket 
Under a Constant Thrust (Constant Mass 
Flow Rate) 

In this case ,  f irst  treated by the author (Ref. 8) i n  1955, and a l s o  by Kooy (Ref. 18) the in- 
vestigation again proceeds from the equation of motion of the rocket in the system of the astro- 
naut traveling with the rocket, namely 

Taking a constant m a s s  flow rate,  p o ,  the mass then decreases  linearly with time t o  according 
to the law 

Again taking the exhaust velocity veo of the qases to be a constant,  then the thrust, Fo , a lso  
must be constant. On the other hand, F = Fo (1 - u/'ueo ) = (ueo - u )  i s  variable. Cornbin- 
inp the two eqs.  (155) and (156) the proper acceleration i s  

(157) - U F P o  ,'/\lo 
3 / 2  = no = - = ueo ( 1  - u 2 / c  ) m 1 - (po/Afo) t o  
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or (since a = du/dt  = n du/dt, ) 

An integration yields 

Thus, the reciprocal mass  ratio is 

This  is again the L.,ic relativist ic rocket equation which is valid for any law of mass  consump- 
tiaa. ;'he inversion of eq. (158) gives the velocity 

therefore 

(160) 

In the two precedinz equations, 1,'r can also be replaced by m,,'M, o r  1 - (po,',~l0) t o .  The 
acceleration is easily found from a = aoa 3 using eq. (160). The time and the distance can b e  
determined in the following manner, using eqs.  (158), (159) and (160): 

and 

1 
for v,+e c 

.J 

In these last equations, 1,'r can be substi tuted bv m,, to  or u according to eq. (158). 

In classical  phvsics  ( e  + bc ; E z zr ,'c+O) a = 1, 11 = a and t = t . For eqs. (159) 
eo 

and (163) the limit must be found bv means of the I3ernoulli-de I'plospital formula: 



2 5  

and 

Unfortunately i t  is not possible to express acceleration, velocity and distance a l s o  by the 
time t ,  as  in  the special  case of constant proper acceleration, s ince eq. (161) cannot he 
inverted to give t o  as  a function of t .  Developing t h i s  equation in a power ser ies  

then the reversed power ser ies  reads 

All preceding relations can be written in dimensionless form when choosing ,\1,,’p0 as  the unit 
of time, c as  the unit of velocity and c hlo,’po a s  the unit of length. The following three 
tables  show numerically the characteristic difference between the case of constant thrust accel-  
eration u, and the case of constant mass flow rate po (the exhaust velocity ueo was taken 
constant in a l l  cases) .  the calculations were made for two 
special  exhaust  velocit ies,  namely for ueo = c,/lO and ueo = c (photon rocket). The  assump- 
tion u, , c = 0 1 is not tvpical for ion rockets;  it is probablv an upper limit. For fusion pro- 
cesses, the m a s s  conversion is <0.009 corresponding to ve, c <O 132 

For the second case ( p ,  = const.)  
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p = p / c  

0;o 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.995 
1.0 

Table  4. Constant Thrust 
X 

chIo ' P o  

0 
0.0269 
0.0603 
0.0816 
0.0930 
0.0981 
0.1002 
0.1008 
0.1010 
0.1010 
0.1010 
0.1010 

p = p / c  I 

t 
M o  / P o  

0 

0.6334 
0.87 19 
0.9604 
0.9935 
1.0051 
1.0088 
1.0098 
1.0101 
1.0101 
1.0101 
1.0101 

I , / C  = 0.1 (Ion P.oc!:et) 
t 

0 

0.6329 
0.8684 
0.9547 
0.9855 
0.9959 
0.9990 
0.9999 
1.0000 
1 .oooo 
1 .oooo 
1.0000 

Table  5. Constant Thrust uo/c = 1 ( Fhoton Rocket) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.995 
1.0 

le 
t 

1 

0.9992 
0.9960 
0.9941 
0.9919 
0.9908. 
0.9903 
0.9902 
0.9900 
0.9900 
0.9900 
0.9900 

- 

x 

0.0 I o  
0.0047 
0.0180 
0.0394 

0.1080 
0.1591 
0.2278 
0.327 1 
0.4993 
1.2476 

0.0690 

m 

t 

0 
0.0 955 
0.1847 
0.2701 
0.3547 
0.4414 
0.5341 
0.6396 
0.7715 
0.9730 
1.7464 

m 

t a 0  
0 

0.0953 
0.1835 
0.2662 
0.3453 
0.4227 
0.5000 
0.5799 
0.6667 
0.7706 
0.9499 

1 

i 
t 

1 
0.9979 
0.9935 
0.9856 
0.9735 
0.9576 
0.9362 
0.9067 
0.8642 
0.7920 
0.5439 

9 

0 

T 

1 

2.724 x l o o  

2.208 x 10' 
6.912 x 101 
2.430 x l o 2  
1.024 x lo3  
5.844 x l o 3  
5.905 x l o 4  
2.476 x l o6  
1 . 0 2 4 ~  l O I 3  

7.599 x loo 

m 

T 

1 
1.1054 
1.2247 
1.3627 
1.5274 
1.7321 
2.0000 
2.3806 
3.0000 
4.3589 

19.9750 
m 
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PART II 

RE1 ATlVlSTlC PERTIIRBATION THEORY OF AN ARTIFICIAL SLZTFI,LITE 
IN AN ARBITRARY ORBIT ABOUT THE ROTATING OBLATFP EARTH SPHEROID 

AND THE TIME DILATATION EFFECT FOR THIS SATELLITE 

SUMMARY 

In this pa r t  Einstein's general theory of relativity (gravitational theory) is applied to the 
motion of an artificial satell i te revolving in an arbitrary orbit around a central body and the time 
dilatation effect  for this satell i te is given. This relativist ic perturbation theory is based on 
Einstein 's  general field theory, differential geometry of non-Euclidean spaces ,  potential theory, 
and ce les t ia l  mechanics. The snort periodic perturbations are excluded by using time average 
values over a revolution. The secular and long-periodic (non-relativistic a s  well a s  relativistic) 
perturbations of the osculating orbital elements, which represent deviations from the elliptic 
orbit, are presented here for the case  of a rotating, non-homogeneous, oblated spheroidal central 
body. Th i s  is an extension of the work of Einstein (1915) who considered motion around a mass 
point a s  well a s  the work of deSitter(l916) and, independently, of Lense and Thirring (1918), who 
treated the relativistic motion around a rotating, homogeneous, spherical central body, omitting 
the terms due to  the square of the angular velocity. 

A formula for the relative difference of the time rates of a satell i te clock, compared against  
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa- 
torial inclinations, thus extending the paper of Winterberg (1955), Singer (1956) and Hoffmann 
(1957). 
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3. APPLICATIONOF THE GENERAL THEORY OF RELATIVITY 
TO ARTIFICIAL SATELLITES 

A. Relativistic Perturbation Theory 

In this section Einstein’s general theory of relativity will be applied to determine the 
motion of an artificial satel l i te  revolving around the rotating earth a s  well as  the difference in 
t i m e  rates of a satcl  ‘ t e  clock and a standard earth clock. 

In Einstein’s general theory of relativity gravitation is determined by the 10 differentcom 
ponents g, of a symmetric covariant tensor of the second rank called the fundamental or metric 
tensor. These components g k ,  and they appear 
in the formula for the four dimensional line-element of the non-Enclidean time-space world,naqely 

a re  functions of the coordinates x ! ;  x2 ;  x 3 ,  x 4  

In the  following, a spherical  polar coordinate system x2 = 6; x 3  = $; x 4  = c t )  will 
be used,  where T is the radius vector, 6 the longitude, 4 the latitude, t the time and c t h e  
light velocity. The l ine element h a s  the following form 

( X I  = r; 

thus 

b c o s 2 +  
g i k =  0 ( i  # k) except g,, = g42 = ( b  = const)  

r 

where a and p are  functions of T alom while g will be assumed to be a function of 7 

a d  4 because i t  is needed to the second order. 44 

The fundamental metric tensor h a s  now the following covariant components: 
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0 g 33 

O g44 

g24 

g l l  g42 

g33 O 

= g11 g22 g = I g k l  I = gll 

g22°  g24 

0 g,, 0 
g42 g44 

- 2  _, = 
g l l  %2 g33 g44 - gl1 g33 g24 sll &2 g33 g44 

g11 O O 

O g33 0 

1 
g24 = g 4 L  - 0 0 g, 

g 

The contravariant components a re  now the minors of the correspondent covariant components 
divided by the determinant, namely 

- - - g 2 4  2 " -  g2 A - g11 g33 g24 - - 
g11 g33 'g22 g44 - g i 4  ) %2 g44 - g24 g22 g44 

minor of gkl  - cofactor of gkl 
gk' = - 

g g 

I and 
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for i = 1 or 3 (171) l o  
\ 

where the g,, and g k f  were taken as functions of x i  and x3 only. Special cases for 1 = i, 
I = k  and k = I = i  are 

r =  1 r r l  

i i thus  r2i = 0 and = 0 .  

r =  1 

1. r =  1 

when all  the functions g,, , g,,, g,, , g 4 ,  and g , ,  = g 4 ,  are functions of x ,  = r and 
x = 4, then the rki, # 0 are 
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3y contraction of the Riemann-Christoffel curvature tensor of rank 4 for the non-Euclidean 
is obtained by the explicit expres- space-time world a symmetrical curvature tensor of rank 

sion 
2 

t he  contracted curvature tensor can now be expressed by 

1 rz +r" r2 + r 3 r 2  +r" r 2  
k l  I 1  k l  12 kJ 13 kJ 14 k 2  11 k 2  I2 k 2  13 k2  1 4  
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and thus for I = k 

+ (rLJ2 + 2  13 r2 + 2  r3 k2 r k 3  + 2  r4 k2 r k 4  + (rky2+2 r3 k 2  r k 3  
k f  k 2  

2 3 

2 3  2 2  NeglectinE higher order terms the ten components of the coaracted curvature tensor are ( r  = r 
4 

33 2 3  
= lT3 = r = 0): 

r z  + r 3 r  + r 2 r 3  + r 2  r 4  + r 3  r 4  
+ r22 41  2 2  4 3  2 3  42  2 4  42 2 4  4 3  

The most important problem in Eirstein's theory was to  set up  the general equations deter- 
mining the gravitational field variables or the g,, when the distribution of mass is g i v e n  
Einstein finally solved this problem in 1915 after several  attempts and succeeded in finding the 
general field equations in covariant form corresponding to Poisson's equation in Newt  on ' s 
mechanics. Based on the theorems of conservation of energy and momentum he (Ref.19) found 



3s 

v here 

- ,  . 

k 1  
I is the curvaturescalar  a d  ' . 

is Eicstein's enerp-momentum tensor neglecting the small  contributions of pressure and elast ic  
s t resses  ( p = density). The constant of proportionality 

8 n G  
c 1  

K =  - (177) 

follows from a comparison o f  d;eTg&era1 field. equations with Poisson's equation (G is Newton's 
gravitation a1 con stan t). 

Multiplying Einstein's field equations (17.4) by g kl  and summing over k and I (con- 

. '  
%,; 1 I . 'L t / e  

traction) then follows 

because 

T = zgkl Tklr and x g k l  gk1 = (179) 
k f  k 1  

Therefore, the field equations can be a l so  -Tiitten i n  the form 
1 . a , T  ,. i :  ; r r  / I  

T I ,  = T,, = T,, = 0 , T44 = (181) 

Einstein 's  field equations are  a system of no rential equations of the second 
which .myst  be solved simultaneously to obtain the components g k t  of the metric tensor.> 
proximate solution for a field with spherical symmetry was first given by 4, Einstein 

(Ref. 20) in  1915, making the assumption that 
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The line element has  now the form 

Introducing harmonic or isotropic coordinates F, 0, q5, c t  defined by the transformation 

the l im element as ies the form 

Including only first order terms in a = 
difference between T and i the l ine e P emem is now given by 

and second-order tern% in  y and neglecting the small 

f $$) cadt  ’ (186) 
2 m  (d~’+ r 2 c o s a 4  do’+ r ’ d $ ’ ) +  

thus 

2 m  2 m  
f -  y = -  -7 a = f i = - y  , 

This particular form was derived and used b~ deSitter in 1916. It determines the 
metric of the non-Euclidean space-time world in the neighborhood of the mass M and the gravi- 
tational field and thus governs a l so  the motion of satellites around this mass. 

(Ref. 22)  

In 1916.W. deSitter (Ref. 22) has  a l so  shown how the motion of satell i tes is influenced by 
the rotation of the central body according to Einstein’s gravitational theory by a l so  introducing 
the component 

T,,=- p Q  T ~ C O S ~ C $  I 

of the energy-momentum tensor in h i s  field equations (Q = angular velocity of the central body). 
The solution then gives the component 

q5 ( b  = const.) % 4 =  

In 1918, J .  Lense  and ri. Thirring (Ref. 23) independently solved the same problem using 
Einstein’s l i i ear  approximation solution for weak fields (Ref. 24) and they arrived a t  the s a m e  
result as de Sitter. All these  authors neglect terms proportional to f l2 .  

In this paper the g,, will be determined including terms due to fl and as well as 
terms due to the oblateness of the central body. This  then leads  to the relativistic perturbation 
theory for the motion of a satell i te around a rotating oblated central body. Again, Einstein’s 
linear approximation method for weak fields will be used. 
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A Cartesi  n coordina e system ( x i  = x; x 2  = y;  x g  = z)  with x ,  = i c t for the imaginary 
time coordinate will be used. In this system a l l  the gkk have the same value - 1 in zero 
approxirnation. If 

and 

a=z 
t:isii Einstein’s snlution for weak fields is given by 

along with the energy-momentum tensor 

the volume element 

d v, = i A dx dV = i d x ‘ d y ‘ d z ‘ z i  5 r ” d r ’ c o s $ ’ d $ ’ d O ’  (191) 
ds ds ds 

and the dis tance of the mass  element dm‘ from the attracted point ( x  = T COS $ COS 6; T = I COS+ 

s in  6 ; z = T s in+)  u d e r  consideration 

A =  [ ( x - x ’ ) 2 + ( y - y ’ )  2 +(z-z’) 2 ] 1 / 2  = I [  I - 2  - T ’  C O S U +  (;,) ’1 f ’ 2  (192) 

with 

(193) cos  u = sin $’sin + + cos $’COS + cos (6‘- 6 )  

From potential theory for T > T ‘  
W 

where, accordin? to Legendre, the surface harmonic Pn (cos  u) is given by the addition theorem 

8 = f  

and 
d e P (sin+) P’ (sin+) = cos’ + 

n d (s in  $1 8 

(195) 

are  the associated Legendre functions of Ferrer* 
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Under the assumption that the central body rotates around the z-axis the velocity components 
of the mass element are: 

The components o f  .he energy-momentum tensor are therefore 

( - Y c o s 2 +  s i n o ' c o s  0' o 

0- i (",'I - cos  +'cos 0' 

i - cos + ' s in  B i tn:j 2 - cos2 4 '  sin2 0' 

( y ) 2 c o s  2 + ' sin 0 cos 0 ' - ( ! y C O S 2  + COS2 0 I 

0 0 0 0 

- i - COS + ' cos  0' 0 1 

(197) 
i(,ybos + ' s in  8' (3 

Introducing eqs.  (190), (191) and (194) into eq. (189) yields 

.. -" " 
In first approximation there is 

thus 

where the components of the tensor (dxk/dx4)(dx, / d x 4 )  are given by the matrix in eq. (197). 

I t  follows a t  once that 

y,; = y i l  = 0 ; y;3 = y i 2  = o  ; y i 3  = o  ; Y i 4  =Y;3 = O  

while the other components are given by 



n = O  J O  

The expression for Pn (cos a )  in eq. (195) a d  the mass element, d m ' =  p r'2cos +'dr*d,$'dij ' ,  
will now be introduced into eqs.  (197) to (202). The integrationwith respect  to the local radius r, 
~i!! be made from 0 to R ;  with respect to tne  latitude, +', from - n / 2  to n/2; and with respect  to 
the longitude, e', from 0 to 2n.  For a spherlcaiiy symmetr ic  mode: :hc densit-; is independent 
of the longitude, 9', and will be assumed to be given by p = p ( r : + ' ) .  Therefore the integration 
with respect to 6' can he performed immediately. In eq. (899) there occurs the irregrals: 

n 
cos 2 8  (s = 2) 

0 ( S ?  0) =I 
Therefore 

The following integral appears in eq. (200): 

thus 

,n 
y44- 0 - 4~ c2r 2 [ LL~;:-Q J r / n  pn (sin 4') dm 

n = O  
In eq. (2011 the following integrals can be found: 
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therefore M 

JO 

sin 6 (s = 1) 

( s  # 1) = I n ‘  cOse 0 

thus 

Introducing 

24 
35 

n 
c o s 2  +’ P f ( s i n + ‘ )  dm’= ( = - (n= 2) 1 

(approximate values refer to a homogeneous body) and using the gravitational radius m = GM/c2 eqs.  
(2C3) to (206) become 

m 

($jn P :  (sin +) cos  2 e 
22 1 

(207) 

(208) 

(209) 

n = O  

m 

n = l  



m 

n= 1 
and therefore 

Because 4 

a = i  
there is 

Taking only the terms up to n = 2 then the components of the fundamental tensor are 

- + i  2m(5!-&)r(+)cos+ sin 0 
cos e g14 - - 

24 

Inorder to have a spherically symmetric field the very small terms proportional to m/r and ( Q R / C ) ~  
wil l  be neglected. In g,, onIy,the term will be retained and the s e c o d  order term 

2 m 2 / r 2 *  [1 - 21,  ( R / T ) ~  P2 (sin#)] 
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will be added according to deSitter (eq. 186). The reason why g,, is required with higher accuracy, 
is that it appears in the  equations of motionmultiplied with the large factor c2. The line element can 
now be written 

Because 

d o 2 =  d x 2 +  dy2 + ,dz2  = d r 2 +  r z  ( c o s 2 +  d o z  + d + 2 )  

the l i n e  element can be written 

+ 2(:7[ 1 - 2 ] , ( 3 2 P 2  

+ - - R cos '+ d e  cd t  2: rCR) 
This is IDW the square of the four-dimensional lim-element for a non-Euclidean space outside a rota- 
ting oblated urhomogenous spheroid of mass M. Writing 

ds2  = gl ldx:  + g,, dxi +g , ,dx;  +g,,dxq +g2, d x 2 d x ,  

vhere now 

e 
x 1  = r  ; x 2 = e  ; x 3 = +  ; x 4 =  c t  

then the comporents of the fudameaal  tensor are 
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Their derivatives are given by 

a d  

It is now easy  to write the values for the Christoffei symbols of second kind: 
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and 

and finally 
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These Christoffel symbois wiii m w  bs siibsdtuted into the eqs.  of motion 

k = l  f = 1  

but first of all  the line element ds can be eliminated by the relation 

which follows immediately from eq. (221). Therefore 

or after dividing by (dx, / d s )  2 

Because 

the final form of the equations of motionis 

k = l  f = 1  
The equations of motion in spherical polar coordinates are thus, up to terms of order m, 



TJsing the relations between the different Christoffel symbols and bringing the terms of the unperturbed 
motion to the left s ide of each equation, the right s ide  will then be the perturbing acceleration (radial  
component R ,  lateral  component P a d  meridional componem 0, respectively) due to oblateaess  a d  
relativistic effects. Rearrargemert of the equations of motion yields 

and 

and 

1 d  . ‘ 2  . .  ‘ 2  
- - ( T ~ ~ ) ) + T O  s i n + c o s + - r +  + 2 r + + r 8  s i n + c o s + =  0 
T dt 

In order to investigate the perturbations of the osculating orbit elements the perturbinp a c -  
cc l i ra r ion  must ’,e given by i t s  radial components R ,  its transversal  component S ,  and its orthoLo - 
iial coriponen- H . re f in i t ions  and transformation equations m a y  be found in the author’s report [ ref  . 
2 5). Intruuucing y ,  the inclination of the orbit with respect  to the equator of the primary, x, .he 
velocity or flight azimuth anplc or the angle between the local meridian a d  the orbit plane,  and u = 
rd + u , the argument of latitude or the sum of the argument of the pericenter a d  the true anomalxthere 
exis t  the following relations for the angles: 

cos  + sin X = cos  y 
cos + cos  x = sin y cos  u 
sin + = sin y sin u 

and the following equations for the angle ra tes  

i, cos2 + = 2; cos  y B cos + = G sin x 
cos 4 = zi sin y cos  u 4 = zi cos x 

The total velocity is therefore 



Its components 

u, = i; vo = r e c o s +  , u d =  r +  

are now transformed to the radial, transversal, and orthogonal v e - x i t y  components, respectively: 

u, = r 

vu = v e  sin X + v + c o s  X =  T 0 COS qi sin ?i + r &, COS X = I ii 

v,, = - ”0 cos X + t1.d sin X = - r 8 c o s  q5 cos X + r qi sir X = 0 
Y 

The transformation equations for the  components of the perturbing acceleration are  

R = R ; S =  P s i n X +  Q cos :I ; W = -  P c o s  X +  Q s i n X  

From the above mentioned relations, there follow the equations 

s in  2 q5 cos X = s i n 2 y  s in  2 u ; 

sin 2 q5 sin X = sin 2 y s in  u ; 
4 sin 2 4 = Ti sin2 y sin 2 u 

:‘i 7 

(232) 

(235) 

which will be used in applying the transformation equations. Substituting the values of P (right s i d e  
of eq. 225) and Q (right s ide  of eq. 226) into eqs.  (232) and taking the expression forR(r ight  s i d e  of 
eq. 224) then (after using eqs.  (227), (228), (233) the components of the perturbing acceler3:ion are 

- s i n 2  y s in  u + s in  2 y s in  u 

or, after substituting the values of the Christoffel symbols and writing 

P2 = P2 (sin 4) = P2 ( s h y  s in  u )  ; c2m = GM = p 

there is 



- 1  

[1-3]2(+7 P2] 

T U  sin2y sin 2 u + - 2 m  r (e)(!) c; c o s y  

and 

(239) 

These expressions for the perturbing accelerations can he simplified by using relations for unperturhed 
'Ceplerian motion in order to obtain first order perturbational effects, namely 

or 

Eqs .  (237), (238) a d  ( 2 3 9 )  can now be written in the form: 

- - - - I ) -  
4 a  T 

1 e sinzy sin w s i n 2  u 
J 
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and 

r2 ( 2(:)2 sin2 y s in  2 u + - 4 e sinw - : I  s = -  - - I  

(244) r22)'~ sin2 y s i n 2  
2 

and 
m 

a 

P Q R 2  ' p  + 2 r - sin y e sin w cos u + 2  s i n u )  + 1 A ( - )  sin 2 y sin j] (245) (nhR) 
The Lagrangian method of the variation of parameters gives the following equations for the t ime  rate 
(variation) of the osculating orbital elements: 

* dP 2 P  T S  - da 2 a 2  
- -  - - [ ( e  sin w) R + ( p / r )  SI 
dt h dt h , 

W J y  r c o s  u r sin u 

dt h dt h sin y 
_ = -  w ; da6d= ___ 

Substituting the expressions for the perturbing accelerations R,  S, W into the eqs.  (244) to (248) that  
yields after reduction: 
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Z T  

A ?+?' p sin2 y s i n 2  u 

A~G 12(:)2[2 c -  - 9 p ,  + (1 +;) e s i n 2 y  s in  w s i n 2  u 1 
. + :[[lo(: - 9  - ( 7 + e 2 ) + 7 ( 1 - e 2 )  L ] -  3]2(:y[F($ 3 

d n  
dt=- 

-1) - 2 ( 7 + e 2 )  

- e s i n Z y s i n w s i n 2 u  

P 

f 2' '1 ( : ) 2 [ 6 - ( l + e 2 ) ~ + ( 1 - e 2 )  P 2J 
+14 ( 1 +  e z )  - 

P 

+ 2 r cy2> k1 + e 2 )  - (1 - e 2 )  - cos y - (Q:x$J(l - 

- 3 A CT)[: Cl R 2  2 

P2 - - 1 

-+) [r + 3  A ($)'P.] P 

(253) 

3 r  

+ 1) e sin2y s i n  w s in  2 

do - d n  h d l -  
- + $ - e 2  - = - 2 - 
dt dt P 

P' 2 - P - e s in2y  s i n  w s i n  2 
2 1 . )  

+ 1. I-("'>$ c o s y  - 1 Q R 2 *  

s i n y  e sin w cos2 u + - P s i n  2 u) + 
+ 2 r ( y 2 )  ( T 

r 
2 4 :+3A( ;yPi } )  

h 

m [ - J2(;J<z - b) s i n 2 y  s in  2 u 
d t  P T  

B 
(255) 

!-% = ( 3 J2(:)' cos y s in2  u + !! [ - 3 1 ,  (:)'(z - :) cos y sin'u 
dt P r  

+ 2 r (YT) (; s i n  w s in  2 u + 2  ?+')'a cos y sin2 

(252) 

(254) 
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s 

The differencial equations (251) to (256) have to be integrated with respect to the t i m e  or better 
with respect to the true anomaly w using again the relations 

c 3 1 +  - e2 2 

3 '  - 2 $!,) 

: e 2  

e3 

0 . 

t2  

h P 
d t = -  dw , ~ = l + e c o s w  , U = O + W  

of iceplerian motion on the right s ide  of the above-mentiored differential equations. Instead of 
doing this, iiiiie mean va!r?es of the variable terms over one revolution will be used  on the right 
s ide  of eqs .  (351) to (256) inorder to cancel out short-periodic perturbations. Using 

there is 

v-2 s in  K w d w  
cos 

--v sin w )  = 1 J2:-v s in  (. ' cos  5 cos  

The evaluationof this integral for v, K as integers shows that 

and that 

/ c o s  K w \  n \*-)= 

n 

1 for K = 0 I O m > l  

- e  1 ~ = 1  
2 

for K = 0 

K = 2  
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t 

COS K W (+= 54 

3 
8 

l + 3 e Z + -  e 4 f o r  K = O  

2 e ( l + T e 2 )  3 K = l  

- e 2 ~ + ~ e 3  3 1 K = 2  
2 

- e 3  K = 3  2 

1 - e4 16 K = 4  

0 K >  4 

Due to u = o + w ,  the addition theorems 

1 1 
2 2 sin w . sin 2 u = - - cos ( 2 0  + 3 w ) +  - cos (2 o +tu) 

1 .  1 
w - cos  2 u = - sin (2 o + 3  w) - - sin ( 2  o + W )  2 2 s in  

the expression for the second harmonics 
r I 1 1 3 

2 Pz = -- ( 3  sin2 y sin2 21 - 1) = - - L<1 - sin2 yj  + sin2y c o s  2 u 
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rhere is 

-= cos 2 "  k-&)#!? cos 2 w (,=Osr 2, ") for n)4 

- -  
C i n  wr:n2u = - cot 2 0  )= - f -cos 2 0  [(+Y+-)] cos w 

f 0 for U ) 3  

These general formulas provide IDW the following special time mean values applied to eqs. (249) to 
(254) : 

- (2)=- - 1 n  - i(l+ 3 
2 h p 3  

c i n  u'r:n 2 u  1 n s in  w sin 2 u )= 1 hpz n e cos 2 0 e c o s 2 o  ; ( 
r ,  >= 7 h p  
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Substituting these t i m e  meanvalues into eqs.  (249) to  (254) then, after reduction, the equations can 
be written 

or 

thus 

1 ( 1 3 + 2 3 e ~ ) s i n 2 y o ~ i n 2 w + - e ~ c o s 2 y o c o s 2 w  1 
2 



- 2r  ("""- JJ, / 

It is easy to integrate L.lese equations where L..e orbital elements on t h e  right side have their unper- 
turbed constant values (subscript 0) except 0, which i s  a linear function of t ime  t ,  namely 

?he integrals 

COS 2 0  dt = s cos 2 0  sin 2 0  dt = -  S 2 'non-rel. 

show that long-periodic perturbatims appear i n  addition to the secular perturbations. 



B. The Time-Dilatation Effect 

Using the line element of eq. (222) the ratio of the proper time element d s  to the local time ele- 
i.iznt dt is givenby 

or accurately enough 

thus 

This  formula, containing the invariant proper time element dr = d d c ,  is now applied to a n  earth clock 
( T =  R, V =  Q R  COS q5): 

W 
= 1 - 9- C o s t l  

C 2 -  

1 R \’ 1 R 2 R 2 c o s 2 +  _ -  [ (g (1 - 3 sin2+)] - - -___ 
d r  
dt.E * 2 C 2  

- 1 -  - 1 +  - J 2  

Assuming the Earth’s surface an equipotential surface,  the potential W, is constant and can  be qxessed  
by its value a t  the equator, t!!us 

where x = R 2  R 3  /c( has been introduced. 

Applying eq. (265) to a satell i te clock moving with the satellite in an arbitrary orbit 

( s i n + = s i n 6 = s i n y o s i n u  ; v 2 / c ‘ 2 = , ( 2 / r -  1 , ’~~)  ; U = O + W )  

that yields 

Using the time mean values 
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then results 

Dividing eq. (266) by eq. (267) gives for the relative difference in the time rates of a satell i te clock 
compaicd wi L! B standard earth clock 

I 
Eq. (268) consis ts  of three main terms. The iirst term (gravitational red sh i f t  and t i m e  dilatation) was 
f i r s t  given 5y Winterberg (1955, Kef.  26) and Singcr (1956, Ref. 27). The former author a l so  added the  
l a s t  term due to the rotation of thc Earth. The second term, iluc to the ohlateness of the Earth,corrtrts  
and generalizes the tern piven by Hoffmann (1957, Ref. 28) for circular orbits in the equatorial plane. 

This paper will be concluded by listing certain constants of the Earth's gravity field which appear 

1 

I 

in the text, namely 

light velocity in vacuo, 299792.50 + 0.10 km/sec (K.D. Froome, 1958) 

gravity factor of the Earth, GM = 398613.52 km3 /secz (Herrick, Baker, 1957) 
equatorial radius of the Earth, 6378.150 + 0.050 km (Baker, 1961) 
oblateness constant of the Earth, (1082.190 + 0.023) x 10% (Kozai, 1960) 

inhomogeneity factor of the  Earth, 0.3336 I l /3  
inhomogeneity factor of the  Earth, - 0.0429 I - 3/70 

gravitational radius of the Earth, p / c 2  = 0.4435 cm 

paen t i a l  energy factor of the Earth, 6.95377 x 10-10 
angular velocity of the Earth's rotation, 7.292115083 x 10-5 sec-1  
rotational velocity a t  the Earth's equator 465.102 m/sec 
angular momentum (per mass unit) a t  the Earth's equator, 2.96649 x 1 0 9 m  '/set 
centrifigal factor a t  the Earth's equator, Q2 R: / p  = 3461.30 x 10- 6 

rotational velocity ratio, 1.55142 x low6 
square of the rotational velocity ratio, 2.40691 x 10 - I 2  
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